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Abstract 

The system of ten linear equations derived in the 
previous paper [Hauptman (1985), Acta Cryst. A41, 
454-456, equations (3.21)-(3.30)] contains a triple 
phase cosine as an unknown parameter, which can 
be calculated via standard techniques. The viability 
of this set of equations and the accuracy with which 
cosine invariants may be calculated is assessed with 
reference to a number of variable parameters in the 
equations. The assessment is performed on both ideal 
and real data sets; in both cases the method is capable 
of identifying a well determined subset of invariants 
for use in direct methods. 

1. Introduction 

In the previous paper (Hauptman, 1985) a method 
of estimating the cosines of triple phase invariants 
via a system of linear equations described. In these 
equations the triplet cosine is one of ten unknown 
parameters. The purpose of this paper is to investigate 
the efficacy of the technique as a method of estimating 
these cosines. The method is first applied to idealized 
crystal structures and then to real crystallographic 
data sets. The following features of the method will 
be discussed in detail. 

(1) The overall viability of the technique. There 
are already several methods of estimating triplet 
cosines from the quintet extension, these include the 
MDKS and TPROD formulae (Hauptman, 1972), the 
use of quadrupoles (Viterbo & Woolfson, 1973), the 
P6 formula (Giacovazzo, 1976, 1977), the use of 
fourth-order Karle-Hauptman determinants 
(Messager & Tsoucaris, 1972; Karle, 1979, 1980) and 
more recently the Plo formula of Cascarano, 
Giacovazzo, Camalli, Spagna, Burla, Nunzi & 
Polidori (1984), which exploits the second representa- 
tion of the triplet and hence the space-group sym- 
metry in a more systematic way. Many of these work- 
ers have used the MDKS formula as a comparison 
and accordingly this paper does likewise. In this way, 
it is possible to compare the above methods. 

(2) The linear-equations approach (subsequently 
called LE) uses the second neighbourhood of the 
triplet. If  the latter is defined as 

~h"~- ~0k'l t- ~0 i = ~03, 

where b + k + 1 = O, the first neighbourhood comprises 
the E magnitudes IEhl, led and lEd;the second neigh- 
bourhood uses the seven additional magnitudes 
IEh~n[, IEk~H[, IE,~H[ and IEHI, where H is a floating 
vector such that IEH[ is not necessarily large. In most 
of the previous utilizations of this neighbourhood 
IEHI is constrained to be large, but the present 
approach does not require it, and so it is necessary 
to define an optimum range of I HI. 

(3) A similar problem arises concerning the magni- 
tudes of the diagonal coefficients B~, B 2 , . . . ,  D~ of 
equations (3.21)-(3.30) in the previous paper. Thus 
in (3.21) B 2 is constrained such that B2> t~, where a 
is 'large'; a similar constraint applies to B 2 in equation 
(3.22) etc. For practical purposes, it is necessary to 
define the optimum value of a. Similarly, terms D 2, 
D 2 and D32 are required to be </3 where/3 is 'small' 
in equations (3.21)-(3.23) and an optimum value of 
/3 also needs to be defined. 

(4) As formulated, there are ten linear equations 
with ten unknown parameters: 

(i) three functions of lal, i.e. Ichl =- 1, 2-1 and 
I ,12-1; 

(ii) seven cosine invariants, one of which is the 
desired cosine cos ~o3. 

For equal-atom structures G = E and hence all the 
terms in (i) may be considered known. The system 
of linear equations reduces to a problem in linear 
least squares (subsequently referred to as LS) with 
ten equations and seven unknown parameters, all of 
which are three-phase invariant cosines. It might be 
expected that this overdeterminacy would improve 
the accuracy of the cosine estimates, but this feature 
needs to be investigated quantitatively. An optimum 
weighting scheme for the LE system was also con- 
sidered. 

(5) The proper utilization of E magnitudes missing 
from the second neighbourhood is also important. If 
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Table 1. Deviations between observed and calculated triple cosines for all calculated cosines 

The constraints are as follows: 
(a)  The diagonal  matrix elements B 2, B 2 . . . . .  > 1.0. 
(b) No  constraints on IE.I. 

(c) No missing IEl's. 
(d)  Linear equat ions employed.  

C A R D  P E N T  T P A L A  C R O W N  

R.m.s. Mean  R.m.s. Mean  
A limits dev.* dev. t  Number  dev.* dev. t  N u m b e r  

<1.0 0.56 0.35 9 x x 0 
1.0-1.1 0.93 0.30 46 x x 0 
1.1-1.2 0.92 0.42 111 x x 0 
1.2-1.4 0.92 0.43 263 1.14 0.61 47 
1.4-1.6 0.87 0.53 351 1.10 0.65 230 
1.6-1.8 0.90 0.62 333 0.97 0.53 291 
1.8-2.0 0.92 0.65 275 1.02 0.57 204 
2.0-2.5 0.88 0.67 541 0.95 0.58 246 
2.5-3.0 0.88 0.72 373 0.95 0.66 66 

>3.0 0.98 0.88 525 0.56 0.42 31 

R.m.s. Mean 
dev.* dev. t  N u m b e r  

1.08 0.42 259 
1.03 0.42 349 
1.02 0.42 414 
1.00 0.45 814 
0.98 0.45 554 
1.02 0.54 404 
1.00 0.45 240 
0,99 0.49 212 
0.92 0.58 62 
0.72 0.32 16 

* Root-mean-square deviation. 
t Mean deviation. 

R.m.s. Mean  
dev.* dev. t  N u m b e r  

1.03 0.35 47 
1.11 0.50 84 
1.12 0.53 118 
1-15 0-46 211 
1.08 0.48 175 
0.95 0-37 91 
0.93 0-48 59 
1.00 0.34 38 
0.73 0-35 12 
2.00 2.00 1 

one or more of the vectors h, k, 1 have indices close 
to the maximum or mininum value for the data set 
in question, then there are very severe restrictions on 
the vector H if all the required E magnitudes associ- 
ated with the six cross vectors h + H, k+  H, ! + H are 
to be within the measured data set. This constraint 
coupled with the restrictions in (3) will limit the 
triplets that are accessible to the equation. However, 
if the missing cross terms are included with E magni- 
tudes of unity the severity of the problem is reduced. 
The viability of this approach and the maximum 
permissible number of missing members in a given 
neighbourhood was thus investigated. 

(6) The theory was derived for space group P1. 
The validity of the equations in other common space 
groups was tested, although, unlike the Plo formula 
(Cascanaro et al., 1984), the space-group symmetry 
is not exploited fully. 

Only the triplet cos ~3 was assessed. The remaining 
triplets in the equation system do not usually involve 
three large E magnitudes in the first neighbourhood. 
When, however, this happens, these invariants show 
the same characteristics as cos ¢3 in the behaviour of 
their estimated cosines. This is to be expected since 
the invariants in the equations all have the same 
2 N  -3/2 dependence ( N  is the number of atoms- 
assumed e q u a l - i n  the unit cell), and similar 
coefficients in the equations and so should be deter- 
mined with similar accuracy. 

2. Experimental results for idealized data 

As an initial test of viability, ideal data sets were 
generated for four structures using published coor- 
dinates and excluding hydrogen atoms. Data were 
generated to a 0 limit corresponding to the Cu sphere. 
This corresponds exactly to the theoretical conditions 

under which the equations are valid, and is therefore 
a useful first test. The four structures were: 

(1) (20S)-3/3,14- dihydroxy-5/3,14/3- cardanolide, 
C23H360 4 (Messerschmidt, Hohne & Lindig, 1981; 
Rohrer, Fullerton, Yoshioka, Kitatsuji, Ahmed & 
From, 1983). The space group is P1 with Z = 1. This 
will be referred to by the acronym CARD. 

(2) A pentapeptide Ac-aib-pro-aib-ala-aib-OBzl, 
C 2 9 H 4 4 N s O  7 (Smith, Fitzgerald & Duax, 1981). The 
space group is P1 with Z = 2. This is a difficult struc- 
ture, originally solved by molecular replacement. The 
acronym is PENT. 

(3) A peptide Boc-pro-aib-ala-aib-OBzyl, 
C28H42NsO 7 (Smith, Pletnev, Duax, Balasubraman- 
ian, Bosshard, Czerwinski, Kendrick, Matthews 
& Marshall, 1981). This is another difficult struc- 
ture in space group P21 with Z = 2. The acronym is 
TPALA. 

(4) A crown ether C 5 6 H 6 8 O l o  (Goldberg, 1980). 
This is a relatively large structure in space group 
P2~2121 with Z = 4. The acronym is CROWN. 

Table 1 summarizes the results of the application 
of equations (3.21)-(3.30) from the previous paper. 
The results are tabulated for the optimum settings of 
the parameters (2)-(5) described in the Introduction. 
It can be seen that individual cosine estimates are 
unreliable with rather large positive mean deviations 
and r.m.s, deviations [deviations are defined as 
(cos ¢)~aleulated--(COS ¢)true throughout this paper], 
but Table 2 shows that it is possible to identify the 
negative cosines with some confidence, and hence 
exclude them from the phasing process in an a priori 
direct-methods analysis. It was also found that both 
the LE and LS methods produced results that were 
largely consistent with each other, and that they were 
of similar accuracy. Both were relatively insensitive 
to the parameters (2)-(5) outlined in the Introduction. 
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Table 2. The number of cosines that are negative and the number that were successfully identified 

The constraints are as defined in Table 1. 

C A R D  P E N T  T P A L A  C R O W N  

N u m b e r  N u m b e r  N u m b e r  N u m b e r  N u m b e r  N u m b e r  N u m b e r  N u m b e r  
A limits negative found  negative found  negative found  negative found  

<1.0 2 2 0 0 72 53 13 9 
1.0-1.1 13 10 0 0 74 43 17 13 
1.1-1-2 24 18 0 0 81 46 26 18 
1.2-1.4 54 39 6 4 128 100 38 20 
1.4-1"6 49 42 24 17 79 51 35 22 
1"6-1"8 35 30 29 21 32 22 14 9 
1.8-2.0 11 9 16 9 40 21 10 8 
2 . 0 - 2 . 5  9 9 10 8 19 10 4 2 
2"5-3"0 2 2 3 3 3 2 0 0 

>3.0 0 0 0 0 1 0 0 0 

Total 199 161 88 62 528 348 157 101 

Table 3. The six structures selected for LE and LS 
analysis and their crystallographic details 

Compound 
name 

TPALA 

PGE2 

TVAL 

SUOA 

MUNICH1 

AZET 

Chemical Space 
Reference formula group Z 

Smith et al C28Ha2N407 P2 t 2 
(1981) 
DeTitta, Langs, C20H320 5 PI 1 
Edmonds & Duax 
(1980) 
Karle (1975); C54HgoN6OI8 P 1 2 
Smith et aL 
(1975) 
Oliver & Strickland C2aH3sOIo P2z212 t 4 
(unpublished) 
Szeimies-Seebach C2oHt6 C2 8 
et aL (1978) 
Colens, Declereq,  C21HI6C1NO Pca21 8 
Germain, Putzeys & 
Van Meerssehe (1974) 

The formulae work equally well in any space group 
tested. It was also found that, in the least-squares 
environment, the standard deviations for the cosines 
derived from the error matrix in the usual way were 
not a reliable guide to the accuracy of the cosine 
estimate. Also, when using LS it was possible to 
compare agreements between observed E magnitudes 
(and hence IE[ 2-1 magnitudes) and the correspond- 
ing calculated I G[ 2 -  I terms from the equations. Typi- 
cal R factors relating observed and calculated E mag- 
nitudes were about 0.2. However, many systems of 
equations were found where the observed and calcu- 
lated E's  were in poor agreement. Surprisingly, it was 
not possible to correlate triplet reliability with the 
occurrence of poor E agreement-  many well esti- 
mated triplets had poorly estimated E magnitudes. 
This topic was not pursued further with real data sets. 

3. Experimental results on real data sets 

Having established the viability of the formulae 
(although in a somewhat limited sense) with idealized 
data, the techniques were then applied to real data 
sets. For this purpose the database of structures resis- 
tant to direct methods compiled by Sheldrick was 
used. Table 3 summarizes the relevant crystallo- 

graphic details of the six structures selected for analy- 
sis from this database. 

As expected, these tests were much less successful: 
(i) the cosine estimates were highly sensitive to 

even small variations in the parameters (2)-(5); 
(ii) most cosines were outside the region -1 .0  to 

+1.0; 
(iii) the LE and LS estimates often differed 

markedly. 
To overcome this, two scaling parameters, C and 

K, were introduced to produce a scaled estimate 
cos ¢~ such that 

cos ~ = K(cos ~3+ C) 

(K is >0, there is no restriction on C). These 
parameters were used to force the distribution of 
cos ~ to follow the Cochran distribution as far as, 
possible (Cochran, 1955). This is by no means a 
unique requirement of this method-  scaling is also 
required in the MDKS, TPROD and Plo formulae. 
The method of scaling closely follows that used in 
deriving the constants M and K in the MDKS 
formula: 

(i) The triplets are sorted on A value, where 

A =  2N-X/2lEhEkEll 

and then divided into groups of 100-200. Under these 
circumstances each group contains cosines of 
approximately constant A. 

(ii) For each group, the triplets are re-sorted in 
descending order of cos ¢~. C is then chosen so that 
the fraction of positive cosines in the group is given 
by 

jl o eAX[ ~rlo(a)(1 - x 2 ) 1 / 2 ]  - 1  dx. 

(iii) Finally, K is selected such that 

(cos tp3) = 11(3)/lo(3), 

where Io(x) and Ii(x) are modified Bessel functions 
of the first kind. 

Different scaling constants are used for LE and LS. 
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This method was applied to six structures in the 
Sheldrick database (Table 3). For each structure over 
100 LE and LS analyses were performed in which the 
parameters (2)-(5) in § 1 were varied in a systematic 
way. From an analysis of the accuracy of the cosine 
estimates and the ability of the formula to predict 
negative cosines, the following general observations 
and rules may be formulated: 

(1) The optimum range of IEnl is that which spans 
the large E magnitudes; there is no benefit (nor any 
loss) in including the low En magnitudes as well, and 
there is a considerable increase in computer time 
required. Typically a range IEnl > 1.0-1.3 is suitable 
(just as in MDKS). 

(2) The constraints a and /3 described in the 
Introduction should be around 1.0 and 0.5 respec- 
tively. Harder constraints than this reduce the number 
of accessible cosines without any improvement in 
either the accuracy or in the ability to identify negative 
cosines. Relaxing the constraints further, however, 
does worsen the reliability of the method. 

(3) Both the LE and LS techniques give answers 
of similar accuracy. Usually the estimates agree, but 
where there is a marked disagreement, it is optimum 
to use the minimum cosine estimate when identifying 
negative cosines. If both estimates are greater than 
zero, then the largest cosine estimate is usually the 
most reliable. This is the preferred method of using 
the method in a structure-solving environment. 

A LS weighting scheme whereby each equation was 
given a weight 

w = 1In 1/2 

was found to be satisfactory, where n is the number 
of terms contributing to the averages in each equation. 
This scheme was marginally more accurate than unit 
weights especially when some equations had few con- 
tributors. 

It was found that the cosine estimates retained their 
viability even when some equations had only one 
contributor, and that any requirement for a minimum 
number of contributors of ten or 20 served only to 
restrict the number of cosines accessible without any 
consequent improvement in their accuracy. 

(4) A similar situation prevails concerning the 
maximum number of missing second neighbours per- 
mitted. The accuracy does not decline when missing 
second neighbours are allowed, although there is a 
corresponding increase in the computer time needed 
since more cross-term searches are successful. If a 
maximum of three such missing cross terms is allowed 
and their magnitudes are set to unity, more triplets 
are accessible to the technique and there is a marginal 
increase in accuracy. Beyond three missing neigh- 
bours, there is a rapid fall in accuracy, as well as a 
further increase in computer time. 

In summary, for practical utilization of the LE and 
LS formulae, minimal constraints should be applied 

Table 4. R.m.s. and mean deviations and percentage 
o f  negative triplet cosines detected for the six data sets 

listed in Table 3 

T h e  re su l t s  u s e  t h e  LS f o r m u l a  ( the  L E  resu l t s  a r e  ve ry  s i m i l a r )  
e x c e p t  fo r  t h e  d e t e c t i o n  o f  n e g a t i v e  cos ines ,  w h e r e  a c o m b i n a t i o n  
o f  L E  a n d  LS is u sed .  T h e  M D K S  resu l t s  a r e  in p a r e n t h e s e s .  

% of  
% of  negative 

Compound triplets R.m.s. Mean cosines 
name accessible deviation deviation found 

TPALA 83 (100) 0.58 (0.60) -0"01 (-0"05) 35 (21) 
PGE2 78 (100) 0.44 (0.44) -0.02 (-0.06) 27 (19) 
TVAL 72 (100) 0-69 (0-69) -0.02 (-0.03) 55 (26) 
SUOA 72 (100) 0.69 (0.69) -0.27 (-0.03) 42 (25) 
MUNICHI 77 (100) 0-61 (0-62) -0.10 (-0.12) 44 (30) 
AZET 79 (100) 0.58 (0.64) -0-12 (-0.16) 61 (40) 

in setting up the equations: 
(i) restrict IE.I> 1.0-1.3; 
(ii) set c~ = 1.0 and/3 - 0 . 5 ;  
(iii) use a combination of LE and LS; 
(iv) use equation weights of 1/n 1/2 with a minimum 

of one contributor to each equation; 
(v) allow up to three missing second neighbours. 

4. Results 

Table 4 summarizes the results obtained for six struc- 
tures whose triplet cosines were estimated via LE and 
LS using the constraints (i)-(v) above. Calculations 
using the MDKS formula are included for com- 
parison. [There is a comparison of MDKS and 
TPROD in Hauptman (1972), and a comparison of 
MDKS and Plo and P6 in Cascanaro et al. (1984), so 
that it is possible to extend this comparison to other 
triplet-estimating formulae.] Table 5 duplicates some 
of the contents of Table 4, but includes only those 
cosines that had estimates > 0.8; these should be well 
behaved subsets with few anomalous triplets, 
although it is important to remember that the struc- 
tures under consideration here are difficult structures 
for direct methods so that the results will be corre- 
spondingly better for easier structures. However, this 
technique is only likely to be used in situations of 
difficulty, so that it is sensible to assess the method 
in these cases. 

Both the LE and LS techniques produce estimates 
of the cosine in the range -1 .0  to +1.0 after scaling, 
although a substantial number of cosines are outside 
this range. (In calculating mean and root-mean- 
square deviations, cosines outside this range have 
been set to -1 .0  and +1.0 respectively.) For reasons 
of space, Tables 4 and 5 do not show the variation 
of the cos ~o3 estimate as a function of A value. In all 
cases the accuracy decreases as A decreases. When 
A is less than unity no worthwhile estimates are 
available, and these are excluded from the analysis. 

It can be seen from r.m.s, and mean deviation 
calculations that, just as with perfect data sets, 
individual cosine estimates are too unreliable for 
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Table 5. R.m.s .  and  mean  deviations f o r  the six data 
sets in Table 3 

Only cosine estimates >0.8 are included; the final column is the 
number of negative cosines that were undetected. The MDKS 
results are in parentheses. 

Number of 
negative 

Compound Number of ILm.s. Mean cosines 
name triplets deviation deviation undetected 

TPALA 381 (413) 0.43 (0.48) 0.21 (0.27) 20 (28) 
aGE2 414 (588) 0.31 (0.36) 0.15 (0.16) 13 (27) 
TVAL 533 (510) 0.36 (0.46) 0.12 (0.16) 20 (30) 
SUOA 521 (608) 0.59 (0.63) 0-32 (0.35) 62 (80) 
MUNICH1 318 (322) 0.42 (0.50) 0-21 (0.26) 20 (24) 
AZET 485 (559) 0.33 (0.45) 0.14 (0.21) 16 (34) 

The direct-methods program M I T H R I L  (Gilmore, 
1984) provides facilities for estimating triplet cosines 
via LE and LS, and for filtering out those relation- 
ships identified as unreliable whilst optionally up- 
weighting those that are deemed to belong to that 
subset identified as well determined. Triplets that are 
inaccessible can be retained or down-weighted. The 
computer time required to calculate the cos q~3 esti- 
mates is similar to that required by the MDKS and 
related methods, but its method of building and 
inverting matrices increases the time required by 
about 50% over that needed by MDKS. 

them to be used directly. This is perhaps not surpris- 
ing; a similar situation is found with the MDKS and 
related formulae. The cosine terms in equations 
(3.21)-(3.30) are of order 2 N  -3/2 whereas the I G[ 2-1 
terms are of order N - I ;  hence the former may be 
considered small correction terms to the latter and 
hence less reliably determined. Also, as N increases, 
the difference between these two sets of terms will 
become much greater and hence the reliability will 
fall. It can be seen, however, that the method is more 
accurate than the MDKS formula. 

In direct methods, the triplets that cause most 
difficulty are usually those that have cos ¢3 < 0.0. The 
LE and LS method is quite efficient in identifying 
such relationships, and this is also shown in Tables 
4 and 5. A comparison with the MDKS results shows 
once again that the LE-LS method is more efficient 
than MDKS. However, a number of cosines are also 
flagged as having negative cosines when their true 
value is >0.0.  This is also a feature of related for- 
mulae. For this reason, triplets identified as having 
negative cosines should be excluded from the direct- 
methods analysis rather than setting ¢3 = or. The over- 
determinacy of the phasing procedure makes this a 
viable proposition. 

It is equally useful in direct methods to have avail- 
able a subset of triplets whose true cosines are close 
to unity for use in the initial stages of phasing. In 
Table 5 those cosines estimated to be >0.8  are extrac- 
ted from the full set and analysed. It is particularly 
noteworthy that the number of negative triplets is 
greatly reduced and there is a fall in the r.m.s, devi- 
ation. 

One deficiency of the present technique is the prob- 
lem of inaccessible triplets - a problem that does not 
generally arise in other methods. This arises from a 
dual system of constraints being applied in the build- 
ing of the equations; not only are constraints placed 
upon IE l as in other triplet cosine formulae, but 
there are additional constraints imposed on those 
terms that may contribute to the averages in the 
equations. In consequence, 15-30% of the triplets are 
rendered inaccessible. 

5. Concluding remarks 

The system of linear equations or least squares pro- 
vides a method of estimating triple phase cosines that 
is at least superior to the MDKS formula. Although 
unable to provide accurate individual cosine esti- 
mates, the subsets for which cos ¢3 > 0.8 and cos ¢s < 
0.0 are quite reliable and may be used as the basis 
of a filtering technique by which poor triplets are 
removed and reliable triplets upweighted in a direct- '  
methods analysis. 
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Abstract 
Problems concerning structural analysis of a one- 
dimensionally modulated structure using its 
(3 + 1)-dimensional symmetry are discussed. Simple 
modifications of the common structure-factor for- 
mula for occupational, displacive with small ampli- 
tudes and mixed modulation are obtained. The 
integral form of the structure factor known from 
literature is critically considered and an analytical 
form for harmonic displacive (not necessarily 
rectilinear) modulation has been found. Analytical 
corrections to the temperature factors have been 
introduced and generalized to cover the phase 
relationships of elliptic modulating waves. The results 
of this paper have been used to prepare a set of 
programs to refine modulated structures. 

1. Introduction 
As a result of many important works by de Wolff, 
Janssen & Janner (1981, and references therein), pro- 
gress in the symmetry description of modulated struc- 
tures by higher-dimensional crystallographic sym- 
metry has been obtained. An alternative approach, 
based on the concept of wreath product, has been 
presented by Litvin (1980) and Koptsik (1978). 

In the works by Yamamoto (1982a, b, c) a (3 + d)- 
dimensional crystallographic symmetry approach has 
been applied to the structure refinement and the struc- 
ture-factor formula (SFF) suitable for this purpose 
has been presented. 

The form of the Debye-Waller factor for modulated 
structure has been discussed in papers by Overhauser 
(1971), AXe (1980) and Adlhart (1982) and applied 
by Steurer & Adlhart (1983) in the refinement of 
a-bis(N-methylsalicylideneiminato)nickel(II). 

Although the SFF presented by Yamamoto covers 
practically all kinds of modulation, the necessity of 
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numerical integration makes application unlikely in 
many cases for which much simpler formulae would 
be sufficient. There are also some questions still open 
concerning temperature-factor corrections, especially 
in relation to the treatment proposed by Overhauser 
and Axe. As will be discussed later, the approaches 
of Yamamoto and Adlhart can lead to different 
results. 

The present work deals with structure factors of 
special as well as general (elliptical displacive waves 
included) cases of modulations. The compact analyti- 
cal expression convenient for computing in the case 
of occupational, displacive with small amplitudes, 
mixed and general types of modulation in the har- 
monic approximation will be presented and their 
limitations discussed. 

An extension of the temperature-factor corrections 
proposed by Axe is proposed for the case of general 
harmonic modulation with displacive wave. 

Our considerations are restricted to the single-q 
modulated structures described by (3 + 1)- 
dimensional crystallographic groups. 

The notation used in this paper is mostly adopted 
from original papers by de Wolff and Yamamoto in 
order to make the comparison easier. 

2. Single-q modulated structure description 

In the modulated structure the positional, occupa- 
tional and thermal parameters can be written as 
periodic functions of a continuous parameter [or 
parameters in multidimensional modulation, see 
Yamamoto (1982a) for that more general case and 
the notation] as follows: 

x~(~)=~+~,u~nen+c.c,  i=  1,2,3, 
n 

(2.1) 
y~ ' (~)  = ~ ~' y~, B ~, ~, y,,e~ +c.c, =P~', or Bij, 

n 
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